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Abstract. Dynamic properties of Brownian particles immersed in a periodic potential with two barriers
V1 and V2 (symmetric bistable potential) are studied by using the Fokker-Planck equation which we solve
numerically by the matrix continued fraction method. This study will therefore serve to demonstrate the
influence of this form of potential, which is of great interest for superionic conductors and for many other
solid systems, on the diffusion process. Thus, we have calculated the full width at half maximum (FWHM)
λ(q) of the quasi-elastic line of the dynamic structure factor, for a large range of values of the wave-vectors
q. Our results show clearly that, by varying the ratio of the barriers ∆ = V2/V1 strictly between 0 and
1, the Fokker-Planck equation describes a diffusive process which has some characteristic of jump and
liquid-like regimes. While in the limit cases, i.e. when ∆ tends to 0 or 1, the diffusion process can be
described only by a simple jump motion. However, the jump-lengths corresponding to each limit case are
not equal. In general the change of the ratio is found to have a significant effect on the character of the
diffusive motion. We have also performed Fokker-Planck dynamics calculations of the diffusion coefficient
in a bistable potential. We have found a good agreement between numerical calculations and analytical
approximation results obtained in the high friction limit.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 82.20.Fd
Stochastic and trajectory models, other theories and models – 05.60.-k Transport processes

1 Introduction

The Brownian motion of particles in a periodic poten-
tial is an important problem in several fields of physics,
and has been the subject of intense investigations recently
[1,2]. This model is of more general interest also, since
dissipation and periodic potentials are frequently encoun-
tered phenomena in condensed-matter physics. In the spe-
cial case of a cosine periodic potential, which is certainly
an oversimplification, its one particle version has been
studied in detail in connection with superionic conductors
[3–6]. It applies also to weakly pinned charge-density-wave
condensates [7], to submonolayer films adsorbed on crys-
talline substrate [8] and to Josephson junctions [9]. The
common feature of these systems is that they consist of
species of highly mobile particles, with diffusion coeffi-
cients comparable to those found in liquids. All the ions
of one sublattice are in this highly mobile state. There is
another species of ions which cannot diffuse. They form
a framework which is usually called the rigid sublattice.
The activation energy required for the mobile ions to dif-
fuse is far lower than that found in ordinary ionic solids,
e.g., in α-AgI at 300 ◦C the diffusion coefficient for Ag+

ions is close to 2 × 10−5 cm2/s. The one of the I− ions
is negligible. These materials show high ionic conductiv-
ity and have given impetus to a new technology, termed
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Solid State Ionics, which contains devices based on the
motion of ions in solids (fuel cells, solid state batteries,
gas sensors, timers, etc.). In a number of these materials
the conduction process is confined to lower dimensionality;
examples include β-alumina (d = 2), potassium hollandite
(d = 1), etc.

The main goal of the work reported here is to study
dynamic properties of a Brownian particle in connection
with superionic conductors in a symmetric bistable poten-
tial. The bistable potential may represent a large class of
potentials of interest in physical problems. The dynamic
properties can be investigated by calculating the dynamic
structure factor S(q, ω), which contains the most complete
information about the diffusing particle and reflects the
collective motion of the mobile particles on a microscopic
scale. This quantity is proportional to the quasi-elastic
scattering intensity both in neutron [10,11] and in atom
scattering experiments [12]. Its full width at half maxi-
mum λ(q) of its quasi-elastic peak contains valuable in-
formation about the interaction of the mobile ions with
the rigid framework and with each other. At small values
of q, it is proportional to the diffusion constant, and larger
q values turn out to give information on the diffusion pro-
cess itself. We have also calculated the diffusion coefficient
of Brownian particle from the FWHM λ(q). This result
will be compared to the one of an analytical expression.
For this purpose, we start from the Fokker-Planck equa-
tion (FPE) which describes quite well the many-particle
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diffusion in a periodic medium, for all friction and bar-
rier regimes. Generally, it is difficult to obtain solutions
of this equation especially if no separation of variables is
possible or if the number of variables is large. For that
the FPE will be solved by the matrix-continued-fraction
method [13] which seems to be a powerful tool to treat
this problem. In this way, the Green function of the FPE
and S(q, ω) can be obtained.

The present paper is organized as follows. In Section 2
we summarize the most relevant parts of the theory of
Brownian particles, which can give a complete treatment
of the diffusive process. The matrix continued fraction
method is outlined for our potential V (x) which we de-
scribe in detail in this work. Section 3 contains the results
and discussions; in Subsection 3.1 we discuss the influence
of the different shapes of potential on the diffusion process.
Whereas Subsection 3.2 is concerned with the diffusion co-
efficient calculated analytically and numerically. We end
by making some general remarks and by summarizing the
main conclusions in Section 4.

2 Fokker-Planck equation

We assume that the ions of the rigid framework are fixed
at their equilibrium positions and they generate a peri-
odic potential in which the mobile species are assumed
to perform Brownian motion. In a real system, the ions
of the framework vibrate around their equilibrium po-
sitions, giving rise to two phenomenological forces: the
dissipative and the random force, related to the friction
via the fluctuation-dissipation theorem [14]. The dynamic
of the particles is then governed by the Langevin equa-
tion [6]. For convenience, it is useful to work with the
transition probability density w(x, v, t/x′, v′) in the phase
space (x, v) of all mobile particles. This function deter-
mines the probability that a particle initially prepared at
position x′ and velocity v′ will be found at x and v after
a time t, and obeys partial differential equation which is
the Fokker-Planck equation [15].

∂w (x, v, t/x′, v′)

∂t
= LFPw (x, v, t/x′, v′) (1)

with the Fokker Planck operator LFP

LFP = −v
∂

∂x
+

1

m

∂V (x)

∂x

∂

∂v
+ γ

∂

∂v

(
v +

kBT

m

∂

∂v

)
(2)

where m, x and v represent respectively the mass, the
position and the velocity of the particle. γ is the friction
coefficient, kB is the Boltzmann’s constant and T is the
temperature of the surrounding heat bath. The shape of
the potential V (x) which is of particular interest in this
work, will be specified in the following subsection.

The operator LFP describes the time evolution of the
system. It is non-hermitian and therefore the eigenvalues
are in general complex, containing oscillation and relax-
ation. The first two terms of the operator are identical
with the Liouvillian of classical mechanics. The others are
dissipative and linear in γ. The Fokker-Planck equation

Fig. 1. Structure of the symmetric bistable potential V (x)
for different values of the ratio of the two potential barriers
∆(∆ = V2/V1). The shape of this potential is similar to the
one for interacting Brownian particles.

describes the Brownian motion in a periodic potential and
is just an equation of motion for the distribution function
of fluctuating macroscopic variables. For a deterministic
treatment we neglect the fluctuations of the macroscopic
variables. In this case (i.e. the free field case) the solu-
tion of the stationary solution of equation (1) (which is
periodic in x) is the Boltzmann distribution.

2.1 Bistable potential model

Let us consider a form of the potential V (x) by taking the
first two terms of the Fourier expansion of the periodic
potential, we can then write

V (x) = A1 cos(qox) +A2 cos(2qox) (3)

where qo = 2π/a denotes the reciprocal lattice vector and
a is the lattice constant. The bistable potential depends on
two parameters, A1 and A2, which determine the ampli-
tudes of both potential barriers (V1 and V2). Our investi-
gations were performed using the potential (3) for various
values of∆ which we define as the ratio of the two different
barriers of potential V (x): ∆ = V2/V1. In order to take dif-
ferent values of ∆, we vary only the second barrier V2. The
first one is chosen to be constant and equal to 0.1 eV (see
Fig. 1). The bistable potential may represent a large class
of potentials of interest in physical problems. In a previ-
ous paper [16], we have shown that for strongly interacting
Brownian particles in two-dimensional periodic potential,
the effective potential computed along the direction where
the system is incommensurate presents the same shape as
the one chosen in this work (Fig. 1). Note that the effec-
tive potential experienced by an ion of the mobile species
is essentially the sum of the periodic static framework po-
tential due to interactions with the ions of the rigid sub-
lattice and the potential of interactions with other mobile
ions. Indeed, in the low temperature regime, the effective
potential exhibits a complicated structure characterized
by the appearance of new equilibrium sites. Most ions are
displaced away from the lattice sites. Such structure was
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observed by means of X-ray diffraction along the tunnel
axis deduced by Weber and Schultz [17].

The concept of the effective potential has been deduced
experimentally for a number of materials and previous
theoretical studies have discussed their role in controlling
the diffusion process. It greatly simplifies the many-body
problem so that a broader range of superionic conductors
may be studied and ionic transport more fully understood
on the basis of this simple concept. In fact, the barrier
height of the effective potential can be very useful in in-
terpreting the transport properties of the system. In par-
ticular, in the high damping limit, it can be interpreted
as an activation energy. Also, the experiment performed
on RbAg4I5 has shown effectively that the potential felt
by a silver ion located at a tetrahedral site has two differ-
ent barriers [18]. For all these reasons, we choose the form
of potential presented in Figure 1 in order to describe a
real situation of the systems in connection with superionic
conductors.

2.2 The Matrix Continued-Fraction Method (MCFM)

Various methods for solving the Fokker-Planck equation
have been used, such as the simulation method and eigen-
function expansion [13]. In this work we use the matrix
continued fraction method (MCFM) which seems to be
very effective for treating the FPE for two variables with-
out detailed balance [13], and which can hardly be solved
by any other method. In several papers Ferrando et al.
[1,2] have applied the MCFM, in order to study the dy-
namic of a classical Brownian particle in simple potential.
This method yields accurate results for the experimen-
tally relevant dynamic correlation functions and also for
the non-equilibrium response. In the periodic case, the
MCFM introduced by Risken et al. [19] is based on the
expansion of the solution into a basis set of plane waves
for the position variable, and of hermit functions for the
velocity variable which form together a complete system
and have the correct natural boundary conditions in ve-
locity space −∞ < v < ∞. For further considerations it
is convenient to introduce the annihilation and creation
operators (b and b+) [13,19]

b =
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1

2
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1

2
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whose commutator is equal to one (bb+ − b+b = 1). We
introduce also the following differential operators
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For numerical calculations it is convenient to use the
Fokker-Planck equation in normalized form. Thus, by in-
troducing the following variables and parameters
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and with the aid of the definitions of operators
(b, b+, D, D̃), the Fokker-Planck operator can be rewrit-
ten as (for simplicity, we omit the normalisation index n)

LFP = −Ψ0 (v) exp
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By solving the Fokker-Planck equation one obtains distri-
bution functions from which averages of macroscopic vari-
ables are obtained by integration. Since the application of
the FPE is not restricted to systems near thermal equilib-
rium, we may as well apply it to systems far from thermal
equilibrium. The solution of this equation depends on the
following parameters: the friction γ, the temperature T
and the ratio of two potential barriers ∆ defined above.

From both a theoretical and an experimental point of
view, the quantity carrying the most important informa-
tion on the correlation effects between the diffusing ions
in space and time is the coherent dynamic structure factor
S(q, ω). It determines the cross section for inelastic neu-
tron scattering and reflects both essential dynamical fea-
tures: the collective excitations of the particles show up
in its high frequency spectrum while its low energy part
give us information about the diffusion process. S(q, ω) is
defined in terms of the dynamical correlation function for
density fluctuations.

S (q, ω) =
1

2π

∫
eiωtF (q, t) dt (8)

with

F (q, t) =
〈

e−iq(x(t)−x(0))
〉
.

The brackets 〈...〉 represent a statistical average, and x(t)
and x(0) refer to the same diffusing particle. Generally,
S(q, ω) consists of the quasi-elastic line and of oscillatory
side peaks associated with phonon modes of the mobile
sublattice. The oscillatory side peaks in addition to the
conventional diffusive peak are found for small q, low fric-
tion and low temperature. As T increases, the side peaks
disappear and merge into a broad background [20]. The
dynamic structure factor can be obtained experimentally
by neutron scattering which is the most powerful tech-
nique to study microscopic properties like diffusion mech-
anisms. The computed spectra S(q, ω) shows qualitatively
some of the essential features which have been observed
on AgI [21] in neutron scattering experiments.

In this paper we applied the MCFM for calculating
the characteristic function and consequently the dynamic
structure factor S(q, ω), the expression of which can then
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G̃0,0(k, iω) =
I

i
a

2π

√
m

kBT
ωI +D

I

a

2π

√
m

kBT
(iω + γ)I + 2D

I

a

2π

√
m

kBT
(iω + 2γ)I + ...

D̃

D̃

(12)

be calculated by

F (q, t) =

∫ ∞
−∞

dx

∫ ∞
−∞
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∫ ∞
−∞

dx′
∫ ∞
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× P (x, v, t/x′, v′, 0))wst(x
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wst(x, v) is the Maxwell-Boltzmann distribution normal-
ized to one particle per cell.

wst(x, v) = NΨ2
0 (v)e−V (x)

where

N−1 =

∫ π

−π
dx e−V (x).

The conditional probability P (x, v, t/x′, v
′
, 0) of having

the particle in x, v at time t, if it was in x
′
, v
′

at time 0, is
the Green function of the probability density w(x, v, t) and
is then obtained by solving Fokker-Planck equation with
initial δ-condition in the position and velocity variables.
We finally obtain the following expression

F (q, t) = 2πN
∞∑

p,q=−∞

Gp,q0,0 (k, t)Mp−lM
∗
q−l (10)

where Mr is the modified Bessel function depending on

the potential Mr = 1
2π

π∫
−π
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V (x)

2 +irxdx, q = 2π/a(k + l)

with |k| ≤ 1/2 (k restricted to the first Brillouin zone),
l integer and N is a normalization factor. The dynamic
structure factor can then be written as:

S (q, ω) = NRe

{
∞∑
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G̃p,q0,0 (k, iω)Mp−lM
∗
q−l

}
(11)

G̃p,q0,0 (k, iω) are the Laplace transforms of the matrix el-

ements Gp,q0,0 (k, t) and can be expressed as a continuous
fraction of some matrix depending on the potential and
the friction.

See equation (12) above

where I is the identity matrix. The normalization factors
have been introduced in the equation (12). The problem
of calculating the dynamic structure factor is essentially
reduced to the evaluation of the matrix continued fraction
(Eq. (12)) which can even be estimated for small friction
constant so that the connection to the zero friction limit
can be made [19]. In the case of bistable potential, the

matrix elements of D and D̃ are given by the following
equations

Dp,q(k) = (p+ q)δp,q +
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4kBT

(
δp,q−1 − δp,q+1

)
+
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)
D̃p,q(k) = (p+ q)δp,q −
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δp,q−1 − δp,q+1

)
−
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2kBT

(
δp,q−2 − δp,q+2

)
.

The dimension of the matrix employed and the number
of iterations in the continued fraction must be chosen in
order to ensure a good convergence of the results. The
speed of convergence depends also on the range of fric-
tion. For small friction the number of iterations may be
very large whereas for large friction only a few terms need
to be taken into account. However, the MCFM seems to
converge even for a very small friction constant. For this
last case one may use energy as a variable [13]. In the very
low temperature limit (kBT/V1 � 1) the dimension of the
matrices, which have to be inverted, becomes too large
and then the method ceases to be tractable.

3 Results and discussions
3.1 The different diffusion mechanisms

We focus on the quasi-elastic peak of S(q, ω) whose
half-width contains valuable information on the diffusion
mechanism. At sufficiently small values of q, the width
λ(q) gives the diffusion coefficient D:

λ(q) = Dq2.

This equation is valid for all diffusion models, since infor-
mation on the microscopic details of the diffusion is lost at
sufficiently small q values. While at larger q the behaviour
of λ(q) depends on the diffusion mechanism.

We make clear that all our numerical calculations
which we will present in the following are done for the
high friction limit, i.e. for Γ = 2πγ/ωo � 1 where
ωo = (2π/a)(V1/2m)1/2 is the characteristic frequency for
vibration at the bottom of the well when ∆ = 0.

We now turn to the presentation of the results obtained
from our calculations. In Figure 2 we show the half-width
at half maximum λ(q) of the quasielastic peak as a func-
tion of the scattering wave-vector q, for different values of
∆ and at low temperature (kBT/V1 � 1). Thus, for ∆ = 0
the full-width λ(q) is found to be approximately periodic
in q with a period equal to 2π/a. In determining the full-
width we have subtracted the inelastic part. For reciprocal
lattice vectors q/qo = 1, 2, 3..., the half-width vanishes and
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Fig. 2. The q-dependence of the half-width of the quasi-elastic
line λ(q) of dynamic structure factor S(q, ω) associated with
different shapes of the bistable potential. Different diffusion
processes are displayed. The parameters for this figure are V1 =
0.1 eV, kBT = V1/6, Γ = 36 (strong damping).

it reaches its maxima at q/qo = 1/2, 3/2, ... etc. We rejoin
the calculations performed by Ferrando et al. [22] in the
case of a simple potential. The system is described by a
jump diffusion process and the jump length is close to the
lattice constant a. This behaviour can be derived exactly
from the hopping model where the only jumps considered
are those connecting nearest-neighbour sites. Within this
simple model the half-width takes the following form:

λ(q) = τ−1(1− cos(qa)) (13)

τ is the residence time of the diffusing particles at the
bottom of the periodic potential and a is the lattice con-
stant. This latter expression can also be obtained from
the Smoluchowski equation which assumes strong damp-
ing of the dynamical behaviour of the particles (their mean
free path is smaller than the lattice constant a). While in
some cases of low friction (Γ � 1) the half-width of the
quasi-elastic peak differs strongly from (13), and a more
general form for λ(q) has been calculated from a model
which takes into account the possibility of jumps to more
distant sites than to the nearest-neighbour ones [23]. It re-
mains generally true that the half-width vanishes and the
intensity of the quasi-elastic line sharpens for reciprocal
vectors q = nqo, in agreement with expression (13).

Let us analyse now the behaviour of λ(q) for ∆ = 3/4
and 9/10. For∆ = 3/4, we see that λ(q) presents a compli-
cated structure which is far from being simply a periodic
function of q; indicating that the dynamic of mobile ions
cannot be described by a simple jump model. Further-
more by increasing still more the value of ∆ (∆ = 9/10)
we note clearly that the width of the minima at qo and 3qo
become narrower; this implies that the jumps of length a
are practically forbidden. Consequently, the jump-length
probabilities are not equivalent for all values of ∆. How-
ever, the diffusion mechanism is dominated by jumps of
length a/2, inside and between the unit cells. While for
∆ = 1(V1 = V2), the periodic potential becomes simple
with one barrier and with a spatial period equal to a/2.

Fig. 3. The q-dependence of λ(q) associated with different low
values of ∆. The parameters are the same as for Figure 2.

The half-width λ(q) recovers then its cosine shape. The
diffusion mechanism is entirely represented by instanta-
neous jumps from an equilibrium site to another one with
jump length a/2. In this case, λ(q) describes a thermally
activated jump diffusion. In fact, in this situation the dif-
fusion coefficient shows the usual Arrhenius behaviour and
the diffusing particle spends most of its time around the
bottom of the potential well, jumps being rare events.
Qualitatively, its behaviour with q remains the same as
represented for ∆ = 0 except for the jump length which
becomes equal to a/2.

However for low values of ∆ (1/10 < ∆ < 1/2), the
behaviour of the half width of the quasi-elastic peak λ(q)
differs from the one seen in Figure 2. In fact, for ∆ = 1/10,
as can be seen in Figure 3 the shape of λ(q) is very close
to a simple cosine as it is in the case for ∆ = 0. But by
increasing slightly the value of the ratio of two potential
barriers ∆, we notice the appearance of the pointed peaks
which move toward the left i.e. toward the low value of
the scattering wave-vector q. So, the change of the ratio
(shape of potential) is found to have a significant effect on
the character of the diffusion motion.

Let us analyse now the influence of the temperature
on the diffusion process in bistable potential. In Figure 4,
the full-width λ(q) is reported as a function of q at high
temperature (kBT = V1/2), for ∆ = 0, 9/10 and 1. By
comparing the two Figures 2 and 4, we observe that the
λ(q) is no longer more periodic, reflecting that the motion
is more liquid-like as we increase the temperature inde-
pendently of the value of ∆. If the temperature is much
higher than the potential barrier, the particle diffuses al-
most freely. The same conclusion can be drawn from com-
parison between Figures 3 and 5 which are reported for
two different temperatures.

3.2 Diffusion coefficient

The diffusion coefficient D of Brownian particles mov-
ing in a periodic potential is an important quantity since
it can describe the intrinsic properties of the system.
Let us recall briefly some of these fundamental relation-
ships. The time integrals of auto-correlation functions
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Fig. 4. Same as in Figure 2 but for high temperature kBT =
V1/2.

Fig. 5. Same as in Figure 3 but for high temperature kBT =
V1/2.

.

are the well known Green-Kubo (GK) relation [24], which
connect the equilibrium fluctuations of the system to the
relevant transport coefficients. In the case of self-diffusion

D = lim
t−→∞

∫ t

0

dt′

3
〈v(0)v(t′)〉 (14)

where v(t) is the particle velocity. In this case the angle
brackets 〈...〉 mean averages over particles and time ori-
gins. There is another expression for calculating D which
was derived in this form first by Einstein [24]. It is straight-
forward to show that the Green-Kubo and the Einstein
expressions are equivalent [25,26]

D = lim
t−→∞

∫ t

0

dt′

3
〈v(0)v (t′)〉 = lim

t−→∞

∫ t

0

dt′

3
〈v(t)v (t′)〉

= lim
t−→∞

1

3
〈v(t)∆r(t)〉 = lim

t−→∞

1

6

d

dt
〈∆r (t)〉 (15)

where the displacement vector ∆r(t) is defined by

∆r (t) = r (t)− r (0) =

∫ t

0

dt′v (t′)

Fig. 6. We present the diffusion coefficient D normalized by
the diffusion constant, calculated in the case of simple potential
(∆ = 0), as a function of the ratio ∆. The black squares cor-
respond to the exact MCFM results and the solid lines to the
analytic results (Eq. (17)). Three different zones are distin-
guished pointing out to different diffusion mechanisms going
from a jump diffusion process to a superposition of hopping
and liquid-like motion. The parameters are the same as for
Figure 2.

if the mean square displacement is linear in time

D =
1

6
lim
t−→∞

〈
∆r (t)

2
〉

t
· (16)

Every transport coefficient can be expressed in the form of
an Einstein relationship. Detailed analytical studies have
been completed in some limiting cases such as high tem-
perature and strong damping on the basis of the Smoluck-
owski equation [27,28]. In the high friction limit, the
diffusion coefficient can be expressed as a functional of
Do = kBT/mγ and V (x). In the one-dimensional case the
functional takes the simple form [9]

D = Do

1

a

a∫
0

exp

(
V (x)

kBT

)
dx

1

a

a∫
0

exp

(
−
V (x)

kBT

)
dx

−1

.

(17)

The results for the diffusion coefficient will be presented
and discussed separately in the different damping regimes.
This quantity will be calculated analytically from equa-
tion (17) and numerically by a direct solution of the FPE
in terms of a matrix continued fraction expansion as:

D =
a

4π

√
m

kBT
lim
q−→0

λ(q)

q2
· (18)

In Figure 6, D is plotted as a function of the ratio
∆ = V2/V1. The figure shows the results of the analyt-
ical approximation (Eq. (17)) and numerical calculations
(black squares), which are in quantitative good agreement
for all values of ∆. In this figure, three regions can be
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clearly distinguished pointing out to three different diffu-
sion processes. In fact, in zone I, the system can be de-
scribed by a jump diffusion process with jump length close
to the lattice constant. In zone II, the diffusion process
consists of a superposition of both liquid-like and hopping
motions. For this zone, we can find different jump lengths
with different probabilities of jump (in addition to jump
length a we can find a/3 and a/2). While the diffusion
process in zone III is described only by the hopping mo-
tions like zone I except that for this case the jump length
is equal to a/2.

The important feature of the curves in Figure 6, is the
fastest decay ofD from its initial valueD(0) within a short
interval (0 < ∆ < 1/8). This is due essentially to the form
of potential which seems to be rectangular (the width of
its well increases; see Figure 1 for ∆ = 1/8 for exam-
ple). Geisel [29] has studied this effect, by using different
periodic potentials with equal barrier heights but differ-
ent curvatures (or harmonic frequencies). In his work, he
found that the highest mobility is found for the narrowest
potential but the lowest mobility is found for an almost
rectangular potential. After this rather rapid initial decay,
D increases normally and essentially in zone II in which
it attains its maximum. The aspect of correlated motions
contributes significantly to the diffusion coefficient, which
explains its increase with D in this zone.

4 Conclusion

In this work, we have investigated the dynamics described
by the Fokker-Planck equation in symmetric bistable po-
tential. The equation is solved numerically by the matrix
continued fraction method which proves turns to be quite
effective. The continuous theory here presented, based on
a Brownian model in the framework of the Fokker-Planck
equation can furnish complete information on the diffu-
sion process. The character of the diffusion process is quite
clearly revealed through the q dependence of the full-width
of the quasi-elastic peak of S(q, ω). In general two different
cases have been considered differing only by the form of
periodic potential: cosine and symmetric bistable forms.
In the former case the diffusion process is very well de-
scribed by a jump diffusion model. The diffusion process
is more complicated in the second case and this is due to
the important liquid-like motion inside the unit cell which
is added to the hopping motion. This aspect of these cor-
related motions contributes significantly to the diffusion
coefficient which we have calculated numerically (from the
full-width at half maximum λ(q)) and analytically. A com-
parison of the two results shows that the agreement is
excellent.

Finally, we conclude that we have solved the FPE,
which is of general interest for Brownian systems and is the
only good first approximation to the description of their
dynamics, by the MCFM extended to potential shapes dif-
ferent from the cosine, which is certainly an oversimplifica-
tion. The results obtained for symmetric bistable potential
can give clear indications for discussion of the analogous
problem in symmetric metastable potential [30].

We are very grateful to Professor R. Ferrando (Genova, Italy)
for many fruitful discussions and for sending us copies of his
pre-prints.
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